تاریخ ما
گزیده‌ای از تاریخ و تمدن جهان باستان

دستاورد های غیاث الدین جمشید کاشانی چه بود؟

ابداع و ترویج کسرهای اعشاری به قیاس با کسرهای شصتگانی که در ستاره‌شناسی متداول بود. محاسبهٔ عدد پی تا شانزده رقم اعشار، به نحوی که تا صدوپنجاه سال بعد کسی نتوانست آن را گسترش دهد: ۲π=۶٫۲۸۳۱۸۵۳۰۷۱۷۹۵۸۶۵
محاسبهٔ سینوس (جِیب) زاویهٔ یک درجه با روش ابتکاری حل یک معادله درجه سوم (sin1=۰٫۰۱۷۴۵۲۴۰۶۴۳۷۲۸۳۵۱۰۳۷۱۲) که هفده رقم اعشاری عدد به دست آمده با مقداری که امروزه محاسبه می‌شود، همخوانی دارد.
در واقع کاشانی مقدار سینوس یک درجه را تا ده رقم صحیح شصتگانی حساب کرد. (به کمک فرمول sin ⁡ ۳ ϕ = ۳ sin ⁡ ϕ − ۴ sin 3 ⁡ ϕ {\displaystyle \sin 3\phi =3\sin \phi -4\sin ^{3}\phi \,\!} )
اختراع ابزار اخترشناسی دقیق از جمله وسیله‌ای به نام «طَبَق المناطق» برای محاسبهٔ طول ستارگان که کتاب نزهه الحدایق در شرح آن است.

نوآوری‌های کاشانی

  1. اختراع کسرهای دهگانی (اعشاری). گرچه کاشانی نخستین به کار برنده این کسرها نیست، اما بی‌تردید رواج این کسرها را به او مدیونیم.
  2. دسته‌بندی معادلات درجه اول تا چهارم و حل عددی معادلات درجه چهارم و بالاتر
  3. محاسبه عدد پی. کاشانی در الرساله المُحیطیه (ص ۲۸)، عدد پی را با دقتی که تا ۱۵۰ سال پس از وی بی‌نظیر ماند محاسبه کرده‌است.
  4. تکمیل و تصحیح روش‌های قدیمی انجام چهار عمل اصلی و اختراع روش‌های جدیدی برای آن‌ها. در واقع، کاشانی را باید مخترع روش‌های کنونی انجام چهار عمل اصلی حساب (به ویژه ضرب و تقسیم) دانست.
  5. اختراع روش کنونی پیدا کردن ریشهٔ n اُم عدد دلخواه. روش کاشانی در اصل همان روشی است که صدها سال بعد توسط پائولو روفینی (ریاضی‌دان ایتالیایی، ۱۷۶۵–۱۸۲۲میلادی) و ویلیام جُرج هارنر (ریاضی‌دان انگلیسی، ۱۷۸۶–۱۸۳۷میلادی)، باردیگر اختراع شد.
  6. اختراع روش کنونی پیدا کردن جذر (ریشهٔ دوم) که در اصل ساده شدهٔ روش پیدا کردن ریشهٔ n اُم است.
  7. ساخت یک ابزار رصدی. کاشانی ابزار رصدی جالبی اختراع کرد و آن را طَبَقُ المَناطِق نامید. رساله‌ای نیز به نام نزْهَهُالحدایق دربارهٔ چگونگی کار با آن نوشت.
  8. تصحیح زیج ایلخانی. کاشانی زیج خاقانی را نیز در تصحیح اشکالات زیج ایلخانی نوشت.
  9. نگارش مهم‌ترین کتاب دربارهٔ حساب. کتاب مفتاح الحساب کاشانی مهم‌ترین و مفصل‌ترین اثر دربارهٔ ریاضیات عملی و حساب در دوره اسلامی است.
  10. محاسبه جیب (سینوس) یک درجه. کاشانی در رسالهٔ وَتَر و جِیب مقداری برای جِیبِ یک درجه (˚sin ۱) به دست آورده که اگر آن را بر ۶۰ تقسیم کنیم، حاصل آن تا ۱۷ رقم اعشاری با مقدار واقعی سینوس یک درجه موافق است.
ممکن است شما دوست داشته باشید

ارسال یک پاسخ

آدرس ایمیل شما منتشر نخواهد شد.